亚洲午夜久久久久久久久久久,一本大道heyzo加勒比,精品亚洲卡一卡2卡三卡乱码,岳的大肥屁熟妇五十路99

您好,歡迎進(jìn)入北京北廣精儀儀器設(shè)備有限公司網(wǎng)站!
產(chǎn)品列表

—— PROUCTS LIST

相關(guān)新聞

—— NEWS

產(chǎn)品中心Products 當(dāng)前位置:首頁 > 產(chǎn)品中心 > 介電常數(shù)介質(zhì)損耗測試儀 > 1MHZ介電常數(shù)測試儀 > 漆膜介電常數(shù)介質(zhì)損耗因數(shù)測試設(shè)備

漆膜介電常數(shù)介質(zhì)損耗因數(shù)測試設(shè)備

漆膜介電常數(shù)介質(zhì)損耗因數(shù)測試設(shè)備

簡要描述:漆膜介電常數(shù)介質(zhì)損耗因數(shù)測試設(shè)備諧振法
諧振法是將樣品作為諧振結(jié)構(gòu)的一部分來測量介電常數(shù)的方法,分為微擾法、全部填充諧振器空間的方法以及部分填充諧振器空間的方法。全部填充可以用公式(6)來計算部分填充主要是為了減小樣品尺寸以及材料對于諧振器參數(shù)的影響,難以進(jìn)行精確地計算,一般用于矯正。微擾法要求相對較小的尺寸,并且相對頻偏要小于0.001,這種情況下其具體尺寸形狀可用填充因子s表示.

更新時間:2024-07-15

產(chǎn)品型號:GDAT-A

廠商性質(zhì):生產(chǎn)廠家

訪問量:895

產(chǎn)品詳情
品牌北廣精儀價格區(qū)間2萬-5萬
產(chǎn)地類別國產(chǎn)應(yīng)用領(lǐng)域化工,農(nóng)業(yè),文體,能源,建材

漆膜介電常數(shù)介質(zhì)損耗因數(shù)測試設(shè)備介電常數(shù)測量技術(shù)在民用,工業(yè)以及等各個領(lǐng)域應(yīng)用廣泛。本文主要對介電常數(shù)測量的常用方法進(jìn)行了綜合論述。首先對標(biāo)準(zhǔn)進(jìn)行了對比總結(jié);然后分別論述了幾種常用測量方法的基本原理、適用范圍、

優(yōu)缺點及發(fā)展近況;后對幾種測量方法進(jìn)行了對比總結(jié),得出結(jié)論。

介電常數(shù)是物體的重要物理性質(zhì),對介電常數(shù)的研究有重要的理論和應(yīng)用意義。電氣工程中的電介質(zhì)問題、電磁兼容問題、生物醫(yī)學(xué)、微波、電子技術(shù)食品加工和地質(zhì)勘探中,無一不利用到物質(zhì)的電磁特性,對介電常數(shù)的測量提出了要求。目前對介電常數(shù)測量方法的應(yīng)用可以說是遍及民用、工業(yè)、國防的各個領(lǐng)域

在食品加工行業(yè)當(dāng)中,儲藏、加工、滅菌、分級及質(zhì)檢等方面都廣泛采用了介電常數(shù)的測量技術(shù)。例如,通過測量介電常數(shù)的大小,新鮮果蔬品質(zhì)、含水率、發(fā)酵和干燥過程中的一些指標(biāo)都得到間接體現(xiàn),此外,根據(jù)食品的介電常數(shù)、含水率確定殺菌時間和功率密度等工藝參數(shù)也是重要的應(yīng)用之一[1]。在路基壓實質(zhì)量檢測和評價中,如果利用常規(guī)的方法,盡管測量結(jié)果比較準(zhǔn)確,但工作量大、周期長、速度慢且對路面造成破壞。由于土體的含水量、溫度及密度都會對其介電特性產(chǎn)生不同程度的影響,因此可以采用雷達(dá)對整個區(qū)域進(jìn)行測試以反算出介電常數(shù)的數(shù)值,通過分析介電性得到路基的密度及壓實度等參數(shù),達(dá)到快速測量路基的密度及壓實度的目的[2]。此外,復(fù)介電常數(shù)測量技術(shù)還在水土污染的監(jiān)測中得到了應(yīng)用[3]。并且還可通過對巖石介電常數(shù)的測量對地震進(jìn)行預(yù)報[4]。上面說的是介電常數(shù)測量在民用方面的部分應(yīng)用,其在工業(yè)上也有重要的應(yīng)用。典型的例子有低介電常數(shù)材料在超大規(guī)模集成電路工藝中的應(yīng)用以及高介電常數(shù)材料在半導(dǎo)體儲存器件中的應(yīng)用。在集成電路工藝中,隨著晶體管密度的不斷增加和線寬的不斷減小,互聯(lián)中電容和電阻的寄生效應(yīng)不斷增大,傳統(tǒng)的絕緣材料二氧化硅被低介電常數(shù)材料所代替是必然的。目前Applied Materials 的BlackDiamond 作為低介電常數(shù)材料,已經(jīng)應(yīng)用于集成電路的商業(yè)化生產(chǎn)[5]。在半導(dǎo)體儲存器件中,利用高介電常數(shù)材料能夠解決半導(dǎo)體器件尺寸縮小而導(dǎo)致的柵氧層厚度極限的問題,同時具備特殊的物理特性,可以實現(xiàn)具有特殊性能的新器件[6]。在方面,介電常數(shù)測量技術(shù)也廣泛應(yīng)用于雷達(dá)和各種特

殊材料的制造與檢測當(dāng)中。對介電常數(shù)測量技術(shù)的應(yīng)用可以說是不勝枚舉。介電常數(shù)的測量技術(shù)已經(jīng)廣泛應(yīng)用于民用、工業(yè)和國防各個領(lǐng)域,并且有發(fā)展的空間和必要性。我們對測量介電常數(shù)的方法進(jìn)行總結(jié),能更清晰的認(rèn)識測量方法的現(xiàn)狀,為某些應(yīng)用提供一種可能適合的方法,是有一定理論和工程應(yīng)用意義的。

.介電常數(shù)測量方法綜述介電常數(shù)的測量按材質(zhì)分類可以分為對固體、液體、氣體以及粉末(顆粒)的測量[7]。固體電介質(zhì)在測量時應(yīng)用為廣泛,通??梢苑譃閷潭ㄐ螤畲笮〉墓腆w和對形狀不確定的固體的測量。相對于固體,液體和氣體的測試方法較少。對于液體,可以采用波導(dǎo)反射法測量其介電常數(shù),誤差在5%左右[8]。此外標(biāo)準(zhǔn)中給出了在90℃、工頻條件下測量液體損耗角正切及介電常數(shù)的方法[9]。對于氣體,具體測試方法少且精度都不十分高。文獻(xiàn)[10]中給出一種測量方法,以測量共振頻率為基礎(chǔ),在LC 串聯(lián)諧振電路中產(chǎn)生震蕩,利用數(shù)字頻率計測量諧振頻率,不斷改變壓強(qiáng)和記錄當(dāng)前壓強(qiáng)下諧振頻率,后用作圖或者一元線性回歸法處理數(shù)據(jù),得到電容變化率進(jìn)而計算出相對介電常數(shù)。

表1 是測量固體介電常數(shù)的標(biāo)準(zhǔn)方法(不包括廢止的方法)及其對頻率、介電常數(shù)范圍、材料等

情況的要求。如表1 所示,標(biāo)準(zhǔn)中已經(jīng)對微擾法和開式腔法的過程做了詳細(xì)介紹,然而對適用頻率和介電常數(shù)的范圍都有所限制。所以在不同材料,不同頻率的情況下,標(biāo)準(zhǔn)也給出了相應(yīng)的具體測量方法。可見,上面所分析的方法并不是可以隨便套用的。在不同的系統(tǒng)、測量不同的材料、所要求的頻率不同的情況下,需要對其具體問題具體分析,這樣才能得出準(zhǔn)確的方法。標(biāo)準(zhǔn)測量方法覆蓋的頻率為50 MHz 以下和100 MHz 到30 GHz,可以說是一個較廣的頻率覆蓋范圍,但是不同范圍適用的材料和環(huán)境等都有所不同。介電常數(shù)的覆蓋范圍是2 到100,接近1 的介電常數(shù)和較高介電常數(shù)的測量方法比較稀缺,損耗普遍在10?3 到10?4 的數(shù)量級上。3. 測量介電常數(shù)的幾種主要方法從總體來說,目前測量介電常數(shù)的方法主要有集中電路法、傳輸線法、諧振法、自由空間波法等等。其中,傳輸線法、集中電路法、諧振法等屬于實驗室測量方法,測量通常是在實驗室中進(jìn)行,要求具有相應(yīng)的樣品采集技術(shù)。另外對于已知介電常數(shù)材料發(fā)泡后的介電常數(shù)通常用經(jīng)驗公式得到[26]。下面,分別對這幾種方法的原理、特點和發(fā)展現(xiàn)狀等做分別闡述。3.1. 集中電路法集中電路法是一種在低頻段將有耗材料填充電容,利用電容各參數(shù)以及測量得到的導(dǎo)納推出介電常數(shù)的一種方法。其原理公式為:

其中, Y 為導(dǎo)納, A 為電容面積, d 為極板間距離,e0 為空氣介電常數(shù),ω 為角頻率。為了測量導(dǎo)納,通常用并聯(lián)諧振回路測出Q 值(品質(zhì)因數(shù))和頻率,進(jìn)而推出介電常數(shù)。由于其高頻率會受到小電感的限制,這種方法的高頻率一般是100 MHz。小電感一般為10 nHz 左右。如果電感過,高頻段雜散電容影響太大。如果頻率過高,則會形成駐波,改變諧振頻率同時輻射損耗驟然增加。但這種方法并不適用于低損材料。因為這種方法能測得的Q 值只有200 左右,使用網(wǎng)絡(luò)分析儀測得tand 也只在10?4 左右。這種方法不但準(zhǔn)確度不高,而且只能測量較低頻率,在現(xiàn)有通信應(yīng)用要求下已不應(yīng)用。

[GB/T 1693-2007]硫化橡膠介電常數(shù)和介質(zhì)損耗角工頻、高頻適用于硫化橡膠

正切值的測定方法

[GB/T 5597-1999]固體電介質(zhì)微波復(fù)介電常數(shù)的測

2~18 試方法 GHz 2~20 0.0001~0.005

[GB 7265.1-87]固體電介質(zhì)微波復(fù)介電常數(shù)的測試方2~18 GHz 2~20 0.0001~0.005 微擾法

法——微擾法

[GB 7265.2-87]固體電介質(zhì)微波復(fù)介電常數(shù)的測試方法——“開式腔"法 3~30 GHz 5~100 0.0002~0.006 開式腔法

[GB 11297.11-89]熱釋電材料介電常數(shù)的測試方法1 kHz ± 5% 適用于熱釋電材料

[GB 11310-89]壓電陶瓷材料性能測試方法相對自由介電常數(shù)溫度特性的測試 1 kHz 適用于壓電陶瓷材料

[GB/T 12636-90]微波介質(zhì)基片復(fù)介電常數(shù)帶狀線測1~20 GHz 2~25 0.0005~0.01 試方法

[QJ 1990.3-90]電絕緣粘合劑電性能測試方法工頻、工頻、高頻適用于電絕緣粘合劑

高頻下介質(zhì)損耗角正切及相對介電常數(shù)的測量(1 MHz 以下)

[SJ 20512-1995]微波大損耗固體材料復(fù)介電常數(shù)和

2~40 GHz 2~100 <1.2 適用于微波大損耗固體材料

復(fù)磁導(dǎo)率測試方法

[SJ/T 1147-93]電容器用有機(jī)薄膜介質(zhì)損耗角正切值工頻、1 kHz、1 適用于電容器用有機(jī)薄膜

和介電常數(shù)試驗方法MHz

[SJ/T 10142-91]電介質(zhì)材料微波復(fù)介電常數(shù)測試方4~12 GHz 4~80 0.1~1 適用于電介質(zhì)材料、同軸線終端開路

法同軸線終端開路法法

[SJ/T 10143-91]固體電介質(zhì)微波復(fù)介電常數(shù)測試方

法——重入腔法 100~1000 MHz <20 0.0002~0.02 適用于電介質(zhì)材料、重入腔法

[SJ/T 11043-96]電子玻璃高頻介質(zhì)損耗和介電常數(shù)

50~50 MHz 適用于電子玻璃

的測試方法

低頻、射頻、適用于巖樣、本方法所指低頻為1

[SY/T 6528-2002]巖樣介電常數(shù)測量方法KHz~15 MHz、射頻為20 MHz~0.27 超高頻

GHz、超高頻為0.2 GHz~3 GHz

3.2. 傳輸線法

傳輸線法是網(wǎng)絡(luò)法的一種,是將介質(zhì)置入測試系統(tǒng)適當(dāng)位置作為單端口或雙端口網(wǎng)絡(luò)。雙端口情況下,通過測量網(wǎng)絡(luò)的s 參數(shù)來得到微波的電磁參數(shù)。圖1 為雙端口傳輸線法的原理示意圖。

其中,Γ 表示空氣樣品的反射系數(shù),g 為傳播系數(shù),l

 漆膜介電常數(shù)介質(zhì)損耗因數(shù)測試設(shè)備同時測量傳輸系數(shù)或者反射系數(shù)的相位和幅度,改變樣品長度或者測量頻率,測出這時的幅度響應(yīng),聯(lián)立方程組就能夠求出相對介電常數(shù)。單端口情況下,通過測量復(fù)反射系數(shù)Γ 來得到、料的復(fù)介電常數(shù)。因此常見的方法有填充樣品傳輸線段法、樣品填充同軸線終端法和將樣品置于開口傳輸線終端測量的方法[27]。第一種方法通過改變樣品長度及測量頻率來測量幅度響應(yīng),求出εr。這種方法可以測得傳輸波和反射波極小點隨樣品長度及頻率的變換,同時能夠避免復(fù)超越方程和的迭代求解。但這一種方法僅限于低、中損耗介質(zhì),對于高損耗介質(zhì),樣品中沒有多次反射。傳輸線法適用于εr 較大的固體及液體,而對于εr 比較小的氣體不太適用。早在 2002年用傳輸反射法就能夠?qū)崿F(xiàn)對任意厚度的樣品在任意頻率上進(jìn)行復(fù)介電常數(shù)的穩(wěn)定測量NRW T/R 法(即基于傳輸/反射參數(shù)的傳輸線法)的優(yōu)勢是簡單、精度高并且適用于波導(dǎo)和同軸系統(tǒng)。但該方法在樣品厚度是測量頻率對應(yīng)的半個波導(dǎo)波長的整數(shù)倍時并不穩(wěn)定。同時此方法存在著多值問題,通常選擇不同頻率或不同厚度的樣品進(jìn)行測量較浪費時間并且不方便。此外就是對于極薄的材料不能進(jìn)行高精度測量[28]。反射法測量介電常數(shù)的早應(yīng)用是Decreton 和Gardial 在1974 年通過測量開口波導(dǎo)系統(tǒng)的反射系數(shù)推導(dǎo)出待測樣品的介電常數(shù)。同軸反射法是反射法的推廣和深化,即把待測樣品等效為兩端口網(wǎng)絡(luò),通過網(wǎng)絡(luò)分析儀測量該網(wǎng)絡(luò)的散射系數(shù),據(jù)此測試出材料的介電常數(shù)。結(jié)果顯示,同軸反射法在測量高損耗材料介電常數(shù)上有一定可行性,可以測量和計算大多數(shù)高損耗電介質(zhì)的介電常數(shù),對諧振腔法不能測量高損耗材料介電常數(shù)的情況有非常大的補(bǔ)充應(yīng)用價值[29]。2006 年又提出了一種測量低損耗薄膜材料介電常數(shù)的標(biāo)量法。該方法運用了傳輸線法測量原理,首先測量待測介質(zhì)損耗,間接得出反射系數(shù),然后由反射系數(shù)與介電常數(shù)的關(guān)系式推出介質(zhì)的介電常數(shù)。其薄膜可以分為低損耗、高損耗和高反射三類,通過實驗證明了三種薄膜的損耗隨頻率改變基本呈相同的變化趨勢,高頻稍有差別,允許誤差范圍內(nèi)可近似。該方法切實可行,但不適用于測量表面粗糙的介質(zhì)[30]。近幾年有人提出了新的確定Ka 波段毫米波損耗材料復(fù)介電常數(shù)的磁導(dǎo)率的測量方法并給出了確定樣品的復(fù)介電常數(shù)及磁導(dǎo)率的散射方程。此方法有下列優(yōu)點:1) 計算復(fù)介電常數(shù)及磁導(dǎo)率方程組是去耦合的,不需要迭代;2) 被測量的頻率范圍比較寬;3) 與傳統(tǒng)方法相比了介電常數(shù)測量對樣品長度和參考面的位置的依賴性;4) 了NRW 方法在某些頻點測量的不確定性[31]。還有人將橢圓偏振法的電些頻點測量的不確定性[31]。還有人將橢圓偏振法的電法用測量樣品反射波或者投射波相對于入射波偏振狀態(tài)的改變來計算光電特性和幾何參數(shù)。毫米波橢圓偏振法得到的復(fù)介電常數(shù)的虛部比實部低,即計算得到的虛部有一定誤差,但它對橢圓偏振法的進(jìn)一步研究提供了重要的參考依據(jù)[32]

微擾腔參數(shù)的函數(shù)。

此時不論形狀尺寸如何,只要得到填充因子s 即可方便求出相對介電常數(shù)。利用此方法可以測量幾乎

所有的材料的介電常數(shù),但是在校準(zhǔn)時要求采用同一形狀。在頻率上區(qū)分,當(dāng)頻率高于1 GHz 時,可以用波導(dǎo)腔測量介電常數(shù),但是當(dāng)頻率高于10 GHz 時,由于基模腔太小等原因,對于介電常數(shù)的測量提出了新的挑戰(zhàn)。諧振法的具體方法有很多,如:矩形腔法、諧振腔微擾法、微帶線諧振器法、帶狀線諧振器法、介質(zhì)諧振器法、高Q 腔法等。近年來對于諧振法又有新的方法不斷出現(xiàn)和改善。

圓柱腔測量介電常數(shù)法是我國在1987 年推出的測量介電常數(shù)的方法,經(jīng)過了對測試夾具的研究和開發(fā)及對開縫腔體的研究,測試結(jié)果更為準(zhǔn)確。其頻率測試范圍大約為1~10 GHz[33]。此外,關(guān)于開放腔方法的改進(jìn)也非常全面和成熟。開放腔方法中廣泛應(yīng)用了兩塊很大平型金屬板中圓柱介質(zhì)構(gòu)成截止開腔的方法,其對于相對介電常數(shù)εr 的測量相對準(zhǔn)確,但對于損耗角tanβ 測量誤差比較大。2006 年有人提出截止波導(dǎo)介質(zhì)腔測量介電常數(shù),可同時測量微波損耗和介電常數(shù),但只能夠用來測量相對介電常數(shù)大于10 的樣品[34]。同時,因為平行板開式腔有一部分能量順著饋線和上下金屬板之間的結(jié)構(gòu)傳輸形成輻射損耗,有人提出通過在饋電側(cè)上下金屬板間增加短路板用來阻止輻射損耗,并且設(shè)計

制作了相應(yīng)系統(tǒng),可以通過單端口工作,對圓柱形介質(zhì)進(jìn)行測試[35]。近兩年出現(xiàn)了很多對于開式腔的改進(jìn)和發(fā)展。由三十八所和東南大學(xué)合作的開式腔法自動測量系統(tǒng),不僅操作簡便,而且其測量的相對介電常數(shù)以及損耗正切的不確定度小于0.17%和20.4%。此外有人提出準(zhǔn)光腔法在毫米波和亞毫米波中的應(yīng)用有高Q 值、使用簡便、不損傷薄膜、靈敏度高、樣品放置容易、能檢測大面積介質(zhì)復(fù)介電常數(shù)均勻性等多項優(yōu)點,但依然只能在若干分離頻率點上進(jìn)行測量[36]??偠灾C振法基本可以測量所有頻率范圍內(nèi)的材料的介電常數(shù),但是現(xiàn)有方法中對毫米波范圍研究居多;具有單模性能好、Q 值高、腔加工和樣品準(zhǔn)備簡單、操作方便以及測量精度高等優(yōu)點;但是對于損耗正切的測量一直不能十分準(zhǔn)確,同時一般只能在幾個分離的頻率點上進(jìn)行測量;同時因為諧振頻率和固有品質(zhì)可以較準(zhǔn)確測量,非常適用于對低損耗介質(zhì)材料的測量。諧振法的技術(shù)已經(jīng)比較完善,但是依然有不足之處:如何確保單頻點法的腔長精確性長期被忽略;提取相對介電常數(shù)的超越方程存在多值解;依然有較多誤差源等[37]。

自由空間法

自由空間法其實也可算是傳輸線法。它的原理可參考線路傳輸法,通過測得傳輸和反射系數(shù),改變樣

品數(shù)據(jù)和頻率來得到介電常數(shù)的數(shù)值。圖2 為其示意圖。

自由空間法與傳輸線法有所不同。傳輸線法要求波導(dǎo)壁和被測材料*接觸,而自由空間法克服了這

個缺點[38]。自由空間法保存了線路傳輸法可以測量寬頻帶范圍的優(yōu)點。自由空間法要求材料要有足夠的損耗,否則會在材料中形成駐波并且引起誤差。因此,這種方法只適用于高于3 GHz 的高頻情況。其高頻率可以達(dá)到100 GHz。

六端口測量技術(shù)

另外,還有一種方法為六端口測量技術(shù)。其測量系統(tǒng)如圖3。在未填充介質(zhì)樣品時,忽略波導(dǎo)損耗,短路段反

 六端口技術(shù)是20 世紀(jì)70 年展起來的一項微波自動測量技術(shù),具有造價低廉和結(jié)構(gòu)簡單等優(yōu)點目前六端口技術(shù)廣泛應(yīng)用于安全防護(hù)、微波計量和工業(yè)在線測量中。六端口技術(shù)是一種通過測量標(biāo)量來替業(yè)在線測量中。六端口技術(shù)是一種通過測量標(biāo)量來替測量[40]。因此其對設(shè)備精度和復(fù)雜度的要求都有所下降。同時六端口技術(shù)在與計算機(jī)控制接口連接的實現(xiàn)上顯現(xiàn)出了很大的優(yōu)勢,有利于微波阻抗和網(wǎng)絡(luò)參數(shù)的自動測量。

早在20 世紀(jì)90 年代,我國的學(xué)術(shù)界就提出了許多校驗方法,并設(shè)計出了精度較高的自動測量系統(tǒng),提出了選用測量低損耗介質(zhì)的微波探頭的建議[41,42]。近幾年六端口技術(shù)仍在不斷地發(fā)展和完善。學(xué)術(shù)界提出了許多新的解超越方程的方法。同時開始采用Matlab 解超越方程,采用Labview 做人機(jī)界面,將Matlab 嵌入其中[43]??偠灾丝诰W(wǎng)絡(luò)可以在寬頻率范圍內(nèi)進(jìn)行測量,目前NIsT 實驗室的六端口系統(tǒng)可以測量10 MHz 到100 GHz 的頻率范圍;六端口網(wǎng)絡(luò)有較高的精度,對 s 參數(shù)的測量可以達(dá)到點頻手動測量的水準(zhǔn);與自動網(wǎng)絡(luò)分析儀比較,結(jié)構(gòu)簡單,成本低,體積小;可以通過計算機(jī)及其軟件對測量進(jìn)行優(yōu)化和計算,更利于實現(xiàn)自動化。

3.6.測量方法總結(jié)

將上述方法的適用場合、優(yōu)缺點可以簡單總結(jié)成表2。

4. 結(jié)論介電常數(shù)的測量技術(shù)已經(jīng)被應(yīng)用于生產(chǎn)生活的各個方面,其測量的標(biāo)準(zhǔn)也十分明確。標(biāo)準(zhǔn)中能夠測量的頻率范圍已經(jīng)覆蓋50 MHz 以下及100 M 到30 GHz。但是其對測試材料種類以及介電常數(shù)和損耗角的數(shù)值范圍有明確規(guī)定,使得各種標(biāo)準(zhǔn)能夠應(yīng)用的范圍不是很廣泛。而就測量方法而言,幾種主要的測量方法各有利弊。集中電路法適用于低頻情況;傳輸線法頻率覆蓋范圍較廣,適用于介電常數(shù)較大的材料,其多數(shù)方法對于高損和薄膜等材料不太適用,方法簡單準(zhǔn)確;諧振法只能在有限頻率點下進(jìn)行測量,適用于低損材料,方法簡單準(zhǔn)確、單模性好;自由空間法準(zhǔn)確性相對較差,但是可以實現(xiàn)實地測量;六端口網(wǎng)絡(luò)法精度高,六端口網(wǎng)絡(luò)造價低廉,頻率覆蓋范圍廣,更適用于以后多種多樣的測量情況的需要,但是沒有具體的標(biāo)準(zhǔn)可以參考??梢姡⒉淮嬖谝环N方法可以*代替其他方法,不同的方法都有自己的優(yōu)點和缺點,在不同的情況下選擇具體的方法是十分有必要的。

 結(jié)束語

現(xiàn)今介電常數(shù)的測量技術(shù)現(xiàn)在正在不斷進(jìn)步和日益完善,對于其測量方法的總結(jié)是希望讀者對其有更加清晰系統(tǒng)的認(rèn)識并且能遇見未來可能的發(fā)展趨勢。當(dāng)然,不同的工程要求和實驗環(huán)境要有具體的測量方法,不可以照葫蘆畫瓢,生搬硬套。相信隨著電子科技和通信行業(yè)的發(fā)展,會有更多更好的測量介電常數(shù)的方法出現(xiàn),為我們的日常生活、工業(yè)發(fā)展和進(jìn)步做出更重大的貢獻(xiàn)。

 參考文獻(xiàn)(References)

[1] 趙婷, 周修理, 李艷軍等. 食品物料介電常數(shù)的研究與應(yīng)用

[J]. 農(nóng)機(jī)化研究, 2012, 5(5): 233-236.

[2] 徐平, 蔡迎春, 王復(fù)明. 介電常數(shù)在路基壓實質(zhì)量檢測與評價

中的應(yīng)用[J]. 路基工程, 2008, 2: 26-28.

[3] 劉永成, 李杰, 田躍等. 復(fù)介電常數(shù)在水土污染監(jiān)測中的應(yīng)用

研究[J]. 環(huán)境科學(xué)與技術(shù), 2006, 8(29): 34-36.

[4] 陳有發(fā). 介電常數(shù)在地震預(yù)報中應(yīng)用的可能性[J]. 西北地震

學(xué)報, 1988, 10(4): 94, 95.

[5] 趙智彪, 許志, 東. 低介電常數(shù)材料在超大規(guī)模集成電路

工藝中的應(yīng)用[J]. 半導(dǎo)體技術(shù), 2004, 29(2): 4-6, 45.

[6] 邵天奇, 任天令, 李春曉等. 高介電常數(shù)材料在半導(dǎo)體存儲器

件中的應(yīng)用[J]. 固體電子學(xué)研究與進(jìn)展, 2002, 22(3): 312-317.

[7] 張治文, 任越青, 楊百屯等. 粉末介質(zhì)介電常數(shù)的測量[J].

絕緣材料通訊, 1989, (2): 28-32.

[8] 鄧京川, 王魁香, 陸國會. 液體介電常數(shù)的微波測量[J]. 物

理實驗, 1996, 16(3): 104-105.

[9] SJT 1147-1993, 電容器用有機(jī)薄膜介質(zhì)損耗角正切值和介電

常數(shù)試驗方法[S]. 1993.

[10] 張皓晶, 石睿, 楊衛(wèi)國, 謝雪冰, 張雄. 氣體相對介電常數(shù)r

的測量[J]. 云南師范大學(xué)學(xué)報, 2005, 25(1): 14-16.

[11] GBT 1693-2007, 硫化橡膠介電常數(shù)和介質(zhì)損耗角正切值的測

定方法[S]. 2007.

[12] GBT 5597-1999, 固體電介質(zhì)微波復(fù)介電常數(shù)的測試方法[S].

1999.

[13] GBT 6113.2-1998, 無線電騷擾和抗擾度測量方法[S]. 1998.

[14] GBT 7265.1-1987, 固體電介質(zhì)微波復(fù)介電常數(shù)的測試方法微

擾法[S]. 1987.

[15] GBT 7265.2-1987, 固體電介質(zhì)微波復(fù)介電常數(shù)的測試方法

“開式腔"法[S]. 1987.

[16] GBT 11297.11-1989, 熱釋電材料介電常數(shù)的測試方法[S].

1989.

[17] GBT 11310-1989, 壓電陶瓷材料性能測試方法相對自由介電

常數(shù)溫度特性的測試[S]. 1989.

[18] GBT 12636-1990, 微波介質(zhì)基片復(fù)介電常數(shù)帶狀線測試方法

[S]. 1990.

[19] QJ 1990.3-1990, 電絕緣粘合劑電性能測試方法工頻、高頻

下介質(zhì)損耗角正切及相對介電常數(shù)的測量[S]. 1990.

[20] SJ 20512-1995, 微波大損耗固體材料復(fù)介電常數(shù)和復(fù)磁導(dǎo)率

測試方法[S]. 1995.

[21] SJT 10142-1991, 電介質(zhì)材料微波復(fù)介電常數(shù)測試方法同軸

線終端開路法[S]. 1991.

[22] SJT 10143-1991 固體電介質(zhì)微波復(fù)介電常數(shù)測試方法重入

腔法[S]. 1991.

[23] SJT 11043-1996, 電子玻璃高頻介質(zhì)損耗和介電常數(shù)的測試

方法[S]. 1996.

[24] SYT 6528-2002, 巖樣介電常數(shù)測量方法[S]. 2002.

[25] GB 5654-1985, 液體絕緣材料工頻相對介電常數(shù)、介質(zhì)損耗

因數(shù)和體積電阻率的測量[S]. 1985.

[26] 洪偉年(譯). 泡沫塑料的相對介電常數(shù)[J]. 藤倉電線技報,

1984, 12(8): 71-79.

[27] 張曉萍. 測量復(fù)介電常數(shù)的一種新方法[J]. 測量復(fù)介電常數(shù)的

一種新方法, 1997, 12(4): 60-62.

[28] 田步寧, 楊德順, 唐家明等. 傳輸/反射法測量復(fù)介電常數(shù)的若

干問題[J]. 電波科學(xué)學(xué)報, 2002, 17(1): 10-15.

[29] 陳維, 姚熹, 魏曉勇. 同軸傳輸反射法測量高損耗材料微波介

電常數(shù)[J]. 功能材料, 2005, 9(36): 1356-1358.

[30] 欒卉, . 測量低損耗薄膜材料介電常數(shù)的標(biāo)量法[J]. 電波科學(xué)學(xué)報, 2006, 21(5): 777-781. 放腔法改進(jìn)[J]. 微波學(xué)報, 2010, 26(3): 38-43.

[31] 薛謙忠, 左元, 韓冰等. 復(fù)介電常數(shù)和磁導(dǎo)率測量的新方法[38] 李紀(jì)鵬, 龔勛, 蔡樹棒. 開口波導(dǎo)法無損測量微波集成電路

[J]. 微波學(xué)報, 2010, 8: 585-587. 基片復(fù)介電常數(shù)[J]. 微波學(xué)報, 1999, 15(4): 317-322.

[32] 李素萍, 華, 張友俊等. 毫米波橢偏法測量介質(zhì)的復(fù)介[39] 彭勝, 許家棟, 韋高等. 六端口反射計測量復(fù)介電常數(shù)的改

電常數(shù)[J]. 上海大學(xué)學(xué)報(自然科學(xué)版), 2010, 16(4): 371-375. 進(jìn)方法[J]. 測量與校準(zhǔn), 2007, 27(2): 27-29.

[33] 徐汝軍, 李恩, 周楊等. TM0n0 圓柱腔測量介質(zhì)復(fù)介電常數(shù)[40] 孔繁敏, 陳罡午, 等. 微帶六端口介電常數(shù)在線測量系

[J]. 材料工藝, 2010, 5: 84-86. 統(tǒng)[J]. 微波學(xué)報, 1997, 13(4): 301-306.

[34] 徐江峰, 陳秋靈, 倪爾瑚. 截止波導(dǎo)介質(zhì)腔介電常數(shù)測量理[41] 孔繁敏, 陳罡午, 等. 用六端口和開口同軸線測量介電

論與方法研究[J]. 儀器儀表學(xué)報, 2006, 27(10): 1322-1325. 常數(shù)的一種校準(zhǔn)方法[J]. 電子學(xué)報, 1996, 24(3): 74, 75.

[35] 吳昌英, 丁君, 韋高等. 一種微波介質(zhì)諧振器介電常數(shù)測量[42] 孔繁敏, 陳罡午, 等. 六端口介電常數(shù)測量系統(tǒng)自校正

方法[J]. 測控技術(shù), 2008, 27(6): 95-97. 的研究[J]. 山東大學(xué)學(xué)報, 1997, 32(4): 425-430.

[36] 于海濤, 吳亮, 李國輝. 測量介質(zhì)材料復(fù)介電常數(shù)的準(zhǔn)光腔[43] 曹玉婷, 張安祺, 尹秋艷. 基于Matlab 的介電常數(shù)測量[J].

法[J]. 材料開發(fā)與應(yīng)用, 2010, 25(3): 54-56. 艦船電子工程, 2008, 28(4): 140-143.

[37] 桂勇鋒, 竇文斌, 姚武生等. 毫米波段復(fù)介電常數(shù)測量的開

高壓電橋

概述:西林電橋,主要用于測量高壓工業(yè)絕緣材料的介質(zhì)損失角的正切值及電容量。其采用了西林電橋的經(jīng)典線路。主要可以測量電容器,互感器,變壓器,各種電工油及各種固體絕緣材料在工頻高壓下的介質(zhì)損耗( tgd)和電容量( Cx)以,其測量線路采用“正接法"即測量對地絕緣的試品。電橋由橋體、指另儀、電位組成,本電橋特別適應(yīng)測量各類絕緣油和絕緣材料的介損(tgd)及介電常數(shù)(ε)。

技術(shù)指標(biāo):

2.1  測量范圍及誤差本電橋的環(huán)境溫度為20±5℃,相對濕度為30%-80%條件下,應(yīng)滿足下列表中的技術(shù)指示要求。

在Cn=100pF    R4=3183.2(W)(即10K/π)時

測量項目測量范圍測量誤差

電容量Cx40pF--20000pF±0.5%  Cx±2pF

介損損耗tgδ0-1±1.5%  tgδx±0.0001

在Cn=100pF      R4=318.3(W)(即1K/π)時

測量項目測量范圍測量誤差

電容量Cx4pF—2000pF±0.5%  Cx±3pF

介損損耗tgδ0-0.1±1.5%  tgδx±0.0001

2.2 電容量及介損顯示精度:

  電容量: ±0.5%  

  介  損: ±1.5%tgdx±1×10-4

標(biāo)準(zhǔn)電容器(SF6)

概述:在每個高壓實驗室和試驗中,壓縮氣體標(biāo)準(zhǔn)電容器是一種必要的儀器。在這些場合中,它有許多重要的作用。在電橋電路中壓縮氣體電容器被用來測量電容器、電纜、套管、絕緣子、變壓器繞組及絕緣材料的電容和介質(zhì)損耗角正切值(tgδ)。而且,還可以用作高壓測量電容分壓裝置的高壓電容。在某些條件下,還可以在局部放電測量中作高壓耦合電容器、

特點:

電容極穩(wěn)定。

氣壓和溫度的變化對電容的影響可以忽略。

介質(zhì)損耗極小

結(jié)構(gòu)簡介:

外殼由絕緣套筒及鋼板制成的底和蓋組成,底和蓋用螺栓及環(huán)緊固在絕緣套筒的兩端。在電容器的上下兩端有防暈罩。電容器外殼內(nèi)裝有同軸高度拋光的圓柱形高低壓電極。電容器設(shè)有壓力表及氣閥,供觀察內(nèi)部壓力及充放氣使用

技術(shù)參數(shù):

1.電容器安裝運行海拔不超過1000米,使用周圍空氣溫度-10℃~40℃,相對濕度不超過70%。

2.電容器的工作頻率為100Hz。

3.電容器實測值誤差不大于±0.05%,與標(biāo)稱值誤差不大于±3%

4.電容器溫度系數(shù) ≤ 3×10-5 /℃

5.電容器壓力系數(shù) ≤ 3×10-3Mpa

6.電容器的損耗角正切值不大于1×10-5 、2×10-5 、5×10-5 三檔。

電容器內(nèi)充SF6氣體。在20℃時,壓力為0.4±0.1Mpa

固體絕緣材料測試電極

本電極適用于固體電工絕緣材料如絕緣漆、樹脂和膠、浸漬纖制品、層壓制品、云母及其制品、塑料、電纜料、薄膜復(fù)合制品、陶瓷和 玻璃等的相對介電系數(shù)(ε)與介質(zhì)損耗角正切值(tgδ)的測試本電極主要用于頻率在工頻50Hz下測量試品的相對介電系數(shù)(ε)和介質(zhì)損耗角正切值(tgδ

本電極的設(shè)計主要是參照國標(biāo)GB1409。

本電極采用的是三電極式結(jié)構(gòu),能有效的表面漏電流的影響,使測量電極下的電場趨于均勻電場

主要技術(shù)指標(biāo)

環(huán)境溫度:20±5℃

相對濕度:65±5%

高低壓電極之間距離:0~5mm可調(diào)

百分表示值誤差:0.01mm(一粒1.5V氧化銀電池供電)

測量極直徑:70±0.1mm

空極tgδ:≤5×10-5

空極電容量:40±1pF

高測試電壓:2000V

實驗頻率:50/100Hz

體積:Ф210mm H180mm

重量:6kg

高壓電源技術(shù)指標(biāo)

一、簡介

高壓電源采用*數(shù)字電路技術(shù),測試電壓、漏電流均為數(shù)字顯示,可以直觀、準(zhǔn)確、快速、

安全的輸出高壓。

技術(shù)規(guī)格

1.輸出電壓(交流)0~10kV(±3%±3個字.a型為0~5KV)

2.漏電流(交流)MAX  20mA(±3%±3個字,可調(diào))

3.變壓器容量:1000VA

4.輸出波形:100Hz正弦波

5.工作電壓:AC220V±10%

6.使用環(huán)境:

環(huán)境溫度:0~40℃

相對濕度:(20~90)%消

7.耗功率:大75VA

8.外形尺寸:320mm(寬)×170mm(高)×245mm(深)

9.重量:10Kg

 如果你對GDAT-A漆膜介電常數(shù)介質(zhì)損耗因數(shù)測試設(shè)備感興趣,想了解更詳細(xì)的產(chǎn)品信息,填寫下表直接與廠家聯(lián)系:

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說明:

  • 驗證碼:

    請輸入計算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7

北京北廣精儀儀器設(shè)備有限公司 版權(quán)所有 © 2024

ICP備案號:京ICP備13008716號-5  總流量:192101  管理登陸  技術(shù)支持:化工儀器網(wǎng)  GoogleSitemap

亚洲成人免费久久av| 漫画韩漫画免费在线观看| 在线亚洲专区中文字幕| 国产高清国内精品福利免费| 亚洲欧美成人激情在线| 日本午夜羞羞在线观看| 一级国产一级日韩一级欧美| 亚洲国产电影一区二区三区| 好看的福利电影在线| 18禁强伦姧人妻又大又久久| 国产第一页久久亚洲| 久久久高清免费精品视频| 国产三级三级在线播放| 国产国语对白在线观看| 黑人操亚洲女一级黄色片| 中文字幕熟女一区二区三区| 亚洲免费电影一区二区| 日韩激情av一区二区| 中文字幕字幕一区二区三区| 国产三级网络视频在线观看| 日韩激情av一区二区| 久久久久久久久久久午夜福利| 2021国产三级精品三级在专区| 青青草原精品国产亚洲av| 国产精品久久久久国产三| 亚洲精品国产第一区三区| 欧美丰满大爆乳波霸奶水多| 2017中文字幕在线| 国产精品熟女高潮久久99| 精品国产自产在线观看| 久久亚洲精品国产av| 欧美成人伦理在线播放| 免费看亚洲精品大片| 五月爱婷婷丁香六月色| 日韩特黄特刺激午夜毛片| 精品日韩欧美一区在线播放| av毛片在线免费观看| 日韩在线中文字幕观看| 国产一区二区综合资源| 西野翔人妻中文字幕电影| 日韩免费码中文字幕在线|